TDP – Тепловыделение процессора: что это за параметр и как ее узнать?

Содержание

TDP – Тепловыделение процессора: что это за параметр и как ее узнать?

Здравствуйте, дорогие читатели моего блога! Сегодня обсудим тепловыделение процессора – что это такое и на что влияет такой параметр, какое бывает максимальное и оптимальное значение, потребляет ли процессор полностью заявленное тепловыделение постоянно. Также рассмотрим несколько ЦП с низким выделением тепла для игр.

Что такое TDP

Thermal Design Power — одна из важных характеристик в описании ЦП. Переводится как расчетная тепловая мощность.

Эта величина указывает средние значения выделения тепла «камнем» при работе.

Может рассчитываться по разным схемам и указывать разные значения: например, когда все ядра полностью загружены, так и в «щадящем» режиме, когда CPU производит несложные вычисления.

Эта величина связана с энергопотреблением, однако не равна ему. Обычно центральный процессор выделяет в виде тепла почти всю энергию, которую потребляет. Соответственно, чем выше энергопотребление, тем выше будет и TDP.

Настройка TDP

Это гибкая величина, которую можно отрегулировать разными способами. Самые распространенные – управление тактовой частотой ЦП и напряжением. Сделать это может через БИОС или с помощью специальных утилит и сам пользователь. Кроме этого, «доработку напильником» выполняет и сам производитель.

Один и тот же CPU может использоваться в разных устройствах: тонком ультрабуке или мощном настольном ПК. Естественно, требования к тепловыделению у них разные: у лептопа этот показатель должен быть сведен к минимуму, так как его возможности теплоотвода ограничены.

Например, у Intel такое широко практикуется с массовыми ЦП i5 9400F, i7 9700K, i3 9100F или i3 8100. Аналогично дела обстоят у AMD, только модели другие. 65 вт — это много для ноутбука, однако вполне приемлемо для десктопного ПК. Соответственно, значение тепловыделения нужно коррелировать программными и аппаратными средствами.Повысить тепловыделение (что зависит от повышения мощности, в первую очередь), можно благодаря внедрению более «жестких» сценариев разгона тактовой частоты и увеличения подаваемого напряжения. Чем больше CPU проработает в таком режиме, тем сильнее он нагреется.

В щадящем же режиме из-за невысокой нагрузки и тепла выделяется меньше. Кстати, аналогично дело обстоит с планшетами и смартфонами: на тех же моделях «камней» производители могут внедрять разные схемы TDP, поэтому производительность девайсов внутри одной линейки будет отличаться.

Это хорошо хотя бы тем, что производитель может адаптировать один и тот же чип под разные задачи, не «изобретая велосипед» повторно. Разработки по настройке TDP обходятся дешевле, чем создание с нуля процесса для производства CPU. А это сказывается на снижении конечной стоимости девайсов для потребителей.

Как узнать TDP процессора? Определить можно по модели, найдя спецификацию на сайте производителя. Узнать же модель используемого ЦП можно с помощью бесплатной утилиты CPU-Z или аналогичной — например, AIDA64 или Sandra.

Несколько процессоров с небольшим тепловыделением

Как и обещал, для примера несколько девайсов, которые выделяют мало тепла:

  • Intel Core i7-770T;
  • Intel Core i5-6500;
  • Intel Core i3-210T
  • Intel Pentium G4520;
  • AMD Fusion A8-7680;
  • AMD Bristol Ridge A6-9500E;
  • AMD Athlon Picasso 3000G.

О том, как нагрузить CPU для проверки температуры, можно почитать здесь. Также советую ознакомиться со статьями «Какие бывают сокеты для ЦП» и «При какой температуре процессора отключается компьютер».

Если вы хотите своевременно получать уведомления о публикации новых материалов, подпишитесь на новостную рассылку. И не забывайте, что делясь постами этого блога в социальных сетях, вы помогаете его продвижению, за что я буду очень признателен. До скорой встречи!

С уважением, автор блога Андрей Андреев.

тепловыделение системного блока компьютера

В тепловом балансе помещений умственного труда с применением ПЭВМ компьютерная техника является одним из главных источников теплопоступлений. В справочной литературе указано, что «тепловыделения от оборудования принимаются в соответствии с технологическим заданием, а при отсутствии данных — 300 Вт от одной ПЭВМ». Многочисленные исследования различных конфигураций ПЭВМ показывают, что среднее потребление даже весьма «навороченного» компьютера составляет всего лишь около 150 Вт.

41455

41456

41457

41458

41459

41460

41461

В тепловом балансе помещений умственного труда с применением ПЭВМ компьютерная техника является одним из главных источников теплопоступлений. В справочной литературе [1] указано, что «…тепловыделения от оборудования принимаются в соответствии с технологическим заданием, а при отсутствии данных — 300 Вт от одной ПЭВМ». Анализ многочисленных проектов по вентиляции и кондиционированию офисных центров показывает, что технологического задания на тепловыделение от компьютерной техники проектировщикам не выдается. Специалисты, руководствуясь справочной литературой, тепловыделения от одной ПЭВМ принимают равными 300 Вт. Но так ли это на самом деле и к чему приводят неточные данные тепловыделений от ПЭВМ?

Существует несколько подходов к расчету тепловыделения в корпусе компьютера, но остановимся на четырех основных [2]. Каждый из них имеет свои достоинства и недостатки.

Есть множество публикаций о том, как выполнить этот расчет, но до сих пор возникают вопросы при его выполнении. Это связано с тем, что не только мощность тепловыделения сложно найти у производителя, но и даже мощность, потребляемая интересующим нас узлом, не всегда известна. В работе [2] рассмотрены тепловыделения отдельных узлов системного блока с учетом коэффициентов тепловыделения и загрузки, а также приведена оценка тепловыделения компьютеров, условно разбитых на три группы по особенностям применения и потребности в ресурсах (табл. 2). В этой таблице даны тепловыделения для достаточно напряженной работы компьютера. Основными источниками тепловыделения являются материнская плата и расположенные на ней — процессор, видеокарта и память (в сумме более 50 % общего тепловыделения).

В настоящее время установлено, что в паспортных данных офисного оборудования потребляемая мощность обычно завышена. В ходе работы [3] было установлено, что для офисного оборудования, паспортная мощность которого не превышает 1 кВт, тепловыделения составляют от 25 до 50 % [3].

В работе [4] приведены результаты тестирования по определению энергопотребления от девяти компьютеров различной мощности. Тестирование производилось в нескольких типичных состояниях: состояние покоя, состояние максимальной процессорной нагрузки, состояние максимальной нагрузки на систему целиком, работа в графическом редакторе, двухпроходное перекодирование HD MPEG-2 видеоролика, финальный рендеринг 3D-сцен в Autodesk 3ds max 2010 в разрешении 1920×1080.

В табл. 3 приведены усредненные значения энергопотребления полной системы (включающей материнскую плату, процессор, память, видеокарту, жесткий диск и процессорный «кулер» с вентилятором) при том или ином типе нагрузки на тестовые системы.

Следует отметить, что разные процессоры при разгоне до примерно одних и тех же пределов по частоте показывают совершенно разное энергопотребление. Казалось бы, в росте энергопотребления и тепловыделения при увеличении частоты процессора нет ничего удивительного. Известно, что эти величины связаны между собой пропорциональной зависимостью. Например, сегодня для «настольных» процессоров приняты несколько типовых значений тепловыделения под нагрузкой: 130 или 95 Вт для производительных моделей и 73 или 65 Вт — для общеупотребительных и бюджетных [4].

Анализируя вышеприведенные данные, можно сделать следующие выводы.

Полученные максимальные измеренные тепловыделения составляли от 52 до 70 Вт. При этом паспортное значение мощности составляло от 165 до 759 Вт. Тепловыделения от компьютера, работающего с монитором, определялись путем вычитания расчетного значения тепловыделений монитора из суммарно измеренной величины. Wilkins и McGaffin опубликовали данные исследования 12-ти компьютеров различных модификаций. Средние тепловыделения составляли 56 Вт, а средняя паспортная мощность — 391 Вт. Итак, средняя величина тепловыделений по 20-ти исследованным компьютерам равна 55,6 Вт.

Исследования [4] показывают, что среднее потребление компьютера составляет всего лишь около 150 Вт, то есть 300 Вт согласно [1] — величина тепловыделений с «хорошим» запасом.

Нами были выполнены экспериментальные исследования по определению величины теплопоступлений от ПЭВМ с применением прибора PCE-GA 70, который показан на рис. 1. Прибор позволяет проводить измерения параметров воздушной среды в помещении с помощью универсального зонда. Память прибора позволяет сохранять до 20 тыс. значений, передавать и обрабатывать их на компьютере с помощью специального программного обеспечения. Технические характеристики прибора PCE-GA 70 приведены в табл. 4. Замеры параметров микроклимата проводились в течение всего рабочего дня непосредственно у задней стенки системного блока в месте расположения вентилятора охлаждения блока питания (рис. 2).

Результаты исследования изобразим графически (рис. 3). По оси абсцисс откладываем время проведения замеров (τx30, с), по оси ординат — значения температуры удаляемого воздуха (tу, °С). Выполнив аппроксимацию кривой ряда 1, выделенного синим цветом, получим y = 0,0023x + 41,05 — линейный ряд с R 2 = 0,7605, y = 0,6284 ln(x) + 38,418 — это логарифмический ряд с R 2 = 0,9109, y = –4e –16 x 6 + 1e –12 x 5 – 1e –09 x 4 + 6e –07 x 3 – 0,0002x 2 + 0,0288x + 39,682 — это полиномиальный ряд с R 2 = 0,9436, где R 2 — величина, характеризующая достоверность аппроксимации — чем ближе значение R2 к единице, тем надежнее линия тренда аппроксимирует конкретный исследуемый процесс. Величина R2 определяется следующим образом:

41454

Видно, что наиболее близка к исследуемой кривой полинома (R 2 = 0,9436). Однако прямую у = 0,0023х + 41,05 с определенной степенью достоверности также можно применять для определения температуры удаляемого воздуха в любой момент времени х.

Расчет теплопоступлений от компьютера проводился по следующей формуле (приближенно):

Определим расчетную величину теплопоступления по формуле (1):

Qпов = 10 × (42 – 25) × 0,85 = 144,5 Вт.

Например, при расчете теплопоступлений в офисных помещениях крупнейшая шведская вентиляционная компания Swegon ориентируется на значение 150 Вт на один компьютер [6]. Сравнивая вышеприведенные данные, можно сделать вывод, что результаты различных исследований по определению средней величины теплопоступлений от ПЭВМ идентичны. Итак, значение теплопоступлений от одного компьютера в офисном помещении следует принимать 150 Вт.

Тепловыделения от оборудования вносят существенный вклад в тепловую нагрузку помещения. Информация, приведенная в данной статье, может стать полезным инструментом для инженеров, выполняющих расчеты нагрузок на холодильное оборудование или анализ энергопотребления.

Авторы также выражают надежду, что изготовители оборудования осознают важность величины паспортной мощности для определения тепловых нагрузок и предпримут необходимые шаги для предоставления более реалистичной информации о потребляемой мощности.

Отметим, что также необходимо регламентировать выдачу технологического задания на теплопоступления от офисной техники при проектировании систем вентиляции и кондиционирования воздуха в помещениях умственного труда с применением ПЭВМ.

Сколько тепла выделяет системный блок моего ПК?

Процессор AMD Athlon XP 3000+

Материнская плата DFI с nF4

Модули памяти DDR (2x1Gb)

Видеокарта GF6600GT SP II

Жесткий диск SATA 80 Гб

Суммарная мощность компонентов – 177

Тепловые потери БП с КПД 0,9 – 18

Выключил всю домашнюю технику кроме компьютера. Получилось в режиме простоя при включенном C’n’Q (Vcpu=1,1 235х5) получилось 10 оборотов за 700 сек. При загрузке компьютера S & M 100% (235х9) 10 оборотов за 400 секунд.

По формуле получается потребляемая мощность в простое P

82 Вт, а при 100% загрузке

144 Вт.
Не так уж и много. Видимо паспортные цифры даются с запасом. Разгоню – измерю еще раз.

Измерил, насколько повышается температура воздуха при прохождении через мой компьютер.

Засасывается воздух в корпус только через низ лицевой панели, выбрасывается только через БП. Все остальные щели на корпусе заклеены бумажным скотчем.

На выхлоп работает только один 120мм вентилятор на дне БП на 600 об/мин (в воздуховоде от CPU к БП). Температура перед лицевой панелью 23 ºС.

Температура воздуха в выходящей струе из БП в режиме простоя 34 ºС (загрузка CPU

Читать статью  Что такое оверклокерская материнская плата

0, C ’ n ’ Q включен, Vcpu =1,08в, 235х5=1170Мгц), ΔΤ = 11 ºС.

По этим цифрам можно оценить реальную производительность вентилятора при 600 об/мин ( по известной формуле http://zelez.livejournal.com/617.html ): V = 1,75 * P / ΔΤ = 1,75 * 82 / 11

60 кв.см (от снятого 80мм вентилятора). Надо будет попробовать ее увеличить. Заодно и плату в БП развернуть радиаторами поближе к выхлопному отверстию.

Главное другое: производительности одного вентилятора 13 CFM при 600 об/мин хватит для теплоотвода от системы даже при полной загрузке процессора. При тепловыделении 144 Вт воздух на выходе должен нагреваться больше чем на ΔΤ = 1,75 * 144 / 13 = 19 ºС. А если при разгоне тепловыделение повысится до 200Вт, нагрев должен быть не больше чем на 27 ºС. Т.е. при входной температуре воздуха 25 ºС выходная будет не выше 52 ºС, что удовлетворяет температурным требованиям по любым компонентам компьютера.

9 мифов об охлаждении компьютера

Привет Пикабу! Не все помнят времена, когда процессоры и видеокарты требовали в худшем случае простого радиатора, а про корпусные вентиляторы и системы водяного охлаждения никто и не слышал. Но все изменилось: современные процессоры и видеокарты могут потреблять под нагрузкой сотни ватт, так что уже никого не удивишь трехсекционными СВО, килограммовыми суперкулерами и парой-тройкой корпусных вертушек. Однако с прогрессом в области охлаждения ПК также прогрессировали и мифы, и сегодня мы о них поговорим.

Миф №1. Чем производительнее охлаждение, тем ниже будет температура процессора.

Казалось бы, все верно: более крутое охлаждение способно отвести больше тепла от крышки процессора, значит его итоговая температура будет ниже. Однако тут ключевой момент — от крышки, а не от кристалла. А ведь между ними есть слой термоинтерфейса, да и зачастую сам кристалл достаточно толстый.

К чему это приводит? Да все к тому, что начиная с определенного тепловыделения процессора уже без разницы, чем вы его будете охлаждать: все упрется в временами не самый качественный термоинтерфейс под крышкой. За примерами ходить далеко не нужно: скальпирование Core i7-8700K и замена терможвачки под крышкой на жидкий металл снизит температуру под нагрузкой как минимум на десяток градусов. Более того — дополнительная шлифовка кристалла топового Core i9-9900K также способна убрать пару градусов.

1584873890157015077

В итоге для любого процессора есть разумное тепловыделение, и при его превышении какая бы ни была крутая система охлаждения, он все равно будет перегреваться. Поэтому нет смысла ставить к тому же Core i7-8700K трехсекционную систему водяного охлаждения, дабы он стабильно работал на 5 ГГц — вы добьетесь даже лучшего эффекта с простой «башенкой», если проскальпируете его.

Миф №2. Кулер нужно выбирать по TDP процессора

Многие производители кулеров и СВО пишут в характеристиках своего изделия, сколько ватт тепла оно может отвести. Аналогично, Intel и AMD пишут тепловыделение своих процессоров. Поэтому может показаться, что если вторая цифра меньше первой, то такое охлаждение вам подойдет.

Увы — тут есть сразу два заблуждения. Во-первых, реальное тепловыделение процессоров под нагрузкой и тем более разгоном зачастую куда выше, чем пишет производитель. Например, номинальный теплопакет Ryzen 9 3900X — 105 Вт, однако на деле он может потреблять почти в два раза больше, около 180-200 Вт. И если сотню ватт способны отвести даже не самые большие башни, то вот 200 Вт требует уже килограммовых суперкулеров или достаточно продвинутых СВО.

Intel тоже принимает в качестве значения TDP уровень энергопотребления при работе на базовой частоте.

1584874005138369987

Во вторых— далеко не всегда понятен смысл фразы «кулер может отвести Х ватт тепла». От какого процессора? Например, площадь крышки у 16-ядерного Threadripper почти вдвое больше, чем у 16-ядерного Ryzen, поэтому отводить тепло с нее проще. Плюс непонятно, с какой термопастой кулер сможет отвести указанное число ватт, и таких «но» можно назвать много. К слову, именно поэтому компания Noctua, не указывает, сколько ватт может отвести их решения.

1584874034122749675

Как же тогда узнать, подойдет вам определенный кулер или нет? Ответ прост — читайте его обзоры и смотрите, на каких тестовых системах его проверяют, после чего делайте логические выводы: к примеру, если кулер справился с Core i7-8700K, то и с более простым Core i5-8600K проблем не будет. И, с другой стороны, если с Ryzen 7 3800X у кулера проблемы, то брать его в пару к Ryzen 9 точно не стоит.

Миф №3. Для игровых ПК обязательно нужна СВО.

Как выглядит навороченный игровой компьютер? Правильно, масса вентиляторов с RGB подсветкой и обязательно система водяного охлаждения, куда же без нее. Однако на деле для подавляющего большинства ПК она просто не нужна.

Почему? Во-первых, игры грузят процессор куда слабее, чем стресс-тесты, и даже топовый Core i9-9900K, способный в тесте AIDA64 потреблять свыше 250 Вт, в играх и до сотни не дойдет, а с таким тепловыделением справится и не самая дорогая башня. Во-вторых, у СВО куда меньшая надежность, чем у кулеров: зачастую за пару лет помпы забиваются и начинают хуже работать и шуметь, а то и вовсе останавливаются. Причем их чистка, если она возможна, — далеко не самый простой процесс. Ну и в-третьих, у СВО плохая эффективность на ватт отводимого тепла: если за 4-5 тысяч рублей вы купите отличный суперкулер, который без проблем справится с топовыми 8-ядерными CPU, то среди СВО за такие деньги будут лишь достаточно бюджетные и не самые качественные модели.

1584874134112390360

Как итог — оставьте СВО для рабочих станций, где трудятся монструозные процессоры с парой-тройкой десятков ядер и тепловыделением под три сотни ватт. Собирая систему на домашних сокетах LGA1151 или AM4, переплачивать за водянку смысла нет.

Миф №4. Боксовые кулеры абсолютно не эффективны и их обязательно нужно менять.

В общем и целом, у большинства пользователей сложилось не самое лучшее впечатление о боксовых кулерах: дескать, они не эффективны и не справляются с процессорами, с которыми они идут в комплекте. Однако на деле это совсем не так.

Разумеется, небольшой алюминиевый радиатор с кусочком меди, не справится с Core i9 в разгоне. Но, к примеру, стоковый кулер вполне себе может удерживать температуры 6-ядерного Core i5-8400 в играх на уровне 60-75 градусов — и это при критичных температурах около сотни градусов. Еще лучше дела обстоят с боксовыми кулерами для Ryzen, которых существуют аж три версии.

1584874180186971719

Так, AMD Wraith Stealth, который поставляется с 4-ядерными Ryzen, вполне справляется с ними даже при небольшом разгоне процессора. А, например, AMD Wraith Prism, который поставляется вместе с Ryzen 7, вообще имеет 4 теплотрубки и показывает себя на уровне башенок за 1000-1500 рублей. Так что не стоит считать боксовые кулеры плохими — если вы не балуетесь разгоном и не нагружаете CPU чем-то сильнее игр, их возможностей вам вполне может хватить.

Миф №5. Жидкий металл всегда эффективнее термопасты

Жидкий металл отличается от термпопаст тем, что у него в разы выше коэффициент теплопроводности, из-за чего, в теории, температуры с ним должны быть ощутимо ниже. Однако на деле это далеко не всегда так. Например, если вы будете использовать вместо хорошей термопасты на крышке процессора жидкий металл, то вы снизите температуру… от силы на 2-3 градуса, а вот если под крышкой (то есть проведете скальпирование), то временами на 15-20 градусов.

1584874217118346079

Почему так? Все просто: площадь кристалла процессора на порядок меньше площади крышки, соответственно тепловой поток между крышкой и кристаллом оказывается огромным. Поэтому теплопроводности термопасты в этом случае не хватает, и выигрыш от перехода на жидкий металл становится ощутимым. А вот между крышкой процессора и подошвой кулера пятно контакта огромно, и тут уже хватает теплопроводности большинства термопаст, так что тратить жидкий металл тут не стоит.

Миф №6. Использование двух вентиляторов на одном радиаторе кулера существенно снизит температуру процессора.

В последнее время стали достаточно распространены процессорные кулеры с двумя и даже тремя вентиляторами, и, казалось бы, они должны эффективнее гонять воздух и тем самым лучше охлаждать ЦП. На деле все как обычно не так хорошо, как хотелось бы.

1584874246140468068

Почему? Да потому что воздух, прошедший через одну стойку радиатора, уже несколько нагрет, и второй радиатор будет по сути гнать через вторую стойку радиатора уже теплый воздух. Поэтому даже в случае с топовыми Noctua снижение температуры процессора от второго вентилятора составляет от силы 3-4 градуса, а уж в случае с китайскими «снеговиками» разница еще меньше. С учетом того, что шума такая система будет производить больше, смысла брать двух или трехвентиляторные кулеры немного.

Миф №7. Расположение в корпусе блока питания никак не влияет на температуру его компонентов.

Большинство относительно дорогих корпусов не просто так имеют место под блок питания в нижней части корпуса — в таком случае его вентилятор захватывает холодный наружный воздух. В более простых корпусах блок питания вынужден брать теплый воздух внутри корпуса, что разумеется негативно повлияет на температуры внутри него.

158487426611043922

А с учетом того, что обычно в простых сборках используют вместе с не самыми дорогими корпусами и не самые лучшие блоки питания — не нужно мешать последним нормально работать, стоит доплатить буквально несколько сотен рублей и взять корпус нижним расположением БП.

Миф №8. SSD не требуют радиаторов.

Небольшие M.2 накопители становятся все популярнее: они зачастую в разы быстрее обычных SATA SSD, а вот цены на них постоянно снижаются. Однако стоит понимать, что высокие скорости просто так не даются: производители таких накопителей используют мощные многоядерные контроллеры, теплопакет которых составляет единицы ватт.

1584874282120069937

Как итог, при работе они могут достаточно существенно греться и достигать критических температур, после чего наступает троттлинг и снижение производительности — в общем, все как у обычных процессоров или видеокарт. Так что если вы купили себе дорогой и быстрый Samsung 960 EVO — докупите к нему радиатор на AliExrpess, если такового нет на материнской плате, это позволит ему работать быстрее при большой нагрузке.

Миф №9. Плохое охлаждение видеокарты никак нельзя исправить.

Мощные видеокарты всегда стоили дорого, а сейчас, с еще большим ослаблением рубля, цены точно не уменьшатся. Как итог, появляется желание сэкономить и взять видеокарту подешевле, и обычно в данном случае покупают референсные версии, которые максимально дешевые.

Однако зачастую быстро приходит понимание того факта, что охлаждение таких GPU или сильно шумит, или недостаточно эффективно и не позволяет толком разогнать видеокарту. Казалось бы, выхода тут нет: зачастую снизить шум можно только урезав видеокарте теплопакет, что снизит производительность, а для более-менее существенного разгона придется пускать вертушки на 100% оборотов, и играть в таком случае получится только в наушниках.

И не все знают, что выход из этой ситуации есть, и он достаточно прост — а именно можно отдельно купить кастомную систему охлаждения.

1584874304131897976

Она способная остудить даже горячую GTX 1080 Ti, причем стоит зачастую дешевле, чем разница между референсом и версией видеокарты от стороннего производителя с хорошим охлаждением.

Более того, в продаже встречаются и водоблоки для топовых RTX и AMD RX — такие решения не просто уберут все проблемы с нагревом, но и еще позволят неслабо разогнать видеокарту. В итоге, как видите, референская видеокарта — не приговор, ее почти всегда можно превратить в топовое решение за сравнительно небольшие деньги.

Как видите, мифов про охлаждение компонентов ПК хватает. Знаете какие-нибудь еще? Пишите об этом в комментариях.

ВСЕ ОБ ОХЛАЖДЕНИИ КОМПЬЮТЕРА

TOP VIEW scaled

Лето стремительно вступило в свои права; столбик термометра ползет вверх, и все чаще приходится задумываться о том, как обеспечить комфортную температуру. Поверьте: для компьютеров проблема борьбы с жарой не менее актуальна, чем для их пользователей. Даже если условия в помещении вполне нормальные (20 — 22°С), температура в системном блоке достигает 30–32°С. И это в лучшем случае. Чем жарче на улице и в квартирах, тем острее вопрос защиты от перегрева и тем пристальнее внимание к системам охлаждения системного блока и его компонентов.

Читать статью  Дисплей порт

Чтобы грамотно решить проблему, необходимо хотя бы в общих чертах представлять, зачем вообще нужны компьютерам системы охлаждения, почему системные блоки перегреваются и как обезопасить «вычислительного друга» от теплового удара. В этой статье вы не найдете длинного перечня моделей кулеров, но, прочитав ее, сами сможете выбрать подходящие компоненты системы охлаждения ПК и грамотно подойти к выбору нового корпуса, а так же подобрать термопасту.

Почему он греется

Причина тривиальна: как любой электроприбор, компьютер рассеивает часть (порой весьма значительную) потребляемой электроэнергии в виде тепла – например, процессор переводит в тепло почти всю использованную энергию. Чем больше ее нужно системному блоку, тем сильнее нагреваются его компоненты. Если тепло вовремя не отводить, это может привести к самым неприятным результатам (см. «Последствия перегрева»). Особенно актуальна проблема теплоотведения и охлаждения для современных моделей процессоров (как центральных, так и графических), устанавливающих все новые рекорды производительности (а нередко и тепловыделения).

Каждый компонент ПК, рассеивающий много тепла, оснащается охлаждающим устройством. Как правило, в таких устройствах присутствуют металлический радиатор и вентилятор – именно из этих компонентов состоит типичный кулер. Важен также термоинтерфейс между ним и нагревающимся компонентом – обычно это термопаста (смесь веществ с хорошей теплопроводностью), обеспечивающая эффективную передачу тепла к радиатору кулера.

Прогресс в области систем охлаждения, благодаря которому появились такие технологические новинки, как термотрубки, обеспечил создателям компонентов для персональных компьютеров новые возможности, позволив отказаться от шумных кулеров. Некоторые компьютеры оснащаются водяными системами охлаждения – они имеют свои достоинства и недостатки. Обо всем этом рассказывается далее.

Рост тепловыделения ПК

Главная причина, по которой компьютеры выделяют все больше и больше тепла, состоит в том, что повышается их вычислительная мощность. Наиболее существенны следующие факторы:

Чем мощнее компьютер, тем больше электричества он «съедает» – следовательно, неизбежен рост тепловыделения. Несмотря на применение изощренных технологических процессов при производстве чипов, их потребляемая мощность все равно растет, увеличивая количество тепла, рассеиваемого в корпусе ПК. Кроме того, возрастает площадь плат видеокарт (например, из­за того, что необходимо разместить больше микросхем памяти). Результат – рост аэродинамического сопротивления корпуса: громоздкая плата просто перекрывает доступ охлаждающего воздуха к процессору и блоку питания. Особенно актуальна эта проблема для ПК в маленьких корпусах, где расстояние между видеокартой и «корзиной» для HDD составляет 2–3 см, – а ведь в этом пространстве еще проложены шлейфы приводов и прочие кабели… Микросхемы оперативной памяти тоже становятся все «прожорливее», а современные ОС требуют все большего ОЗУ. Например, в Windows 7 для него рекомендуется 4 Гб – таким образом, рассеивается несколько десятков ватт тепла, что дополнительно усугубляет ситуацию с тепловыделением. Микросхема системной логики на материнской плате тоже является весьма «горячим» компонентом.

df3db3ec3af5afd2c426009eff7e

УЯЗВИМОСТЬ ЖЕСТКИХ ДИСКОВ

Внутри корпуса жесткого диска над поверхностью вращающихся пластин скользят подвижные магнитные головки, управляемые высокоточной механикой. Они осуществляют запись и чтение данных. При нагревании материалы, из которых сделаны компоненты диска, расширяются. В рабочем диапазоне температур механика и электроника вполне справляются с тепловым расширением. Однако при перегреве оно превышает допустимые пределы, и головки жесткого диска могут «промахиваться», записывая данные не там, где нужно, пока компьютер не будет выключен. А когда его снова включат, остывший жесткий диск не сможет найти данные, записанные в перегретом состоянии. В подобном случае информацию удается спасти только при помощи сложного и дорогого спецоборудования. Если температура превышает 45°С, для охлаждения жесткого диска рекомендуется установить дополнительный вентилятор.

Налицо парадокс: тепловая нагрузка в современных корпусах растет высокими темпами, а их конструкция почти не меняется: производители берут за основу рекомендованный Intel дизайн почти 10­летней давности. Модели, приспособленные к интенсивному тепловыделению, встречаются нечасто, а малошумные – и того реже.

Последствия перегрева

При избытке тепла компьютер в лучшем случае начнет тормозить и зависать, а в худшем – один или несколько компонентов выйдут из строя. Высокие температуры очень вредны для «здоровья» элементной базы (микросхем, конденсаторов и пр.), особенно для жесткого диска, перегрев которого чреват потерей данных.

ПРИМЕРНЫЕ ПАРАМЕТРЫ ТЕПЛОВЫДЕЛЕНИЯ

2d86ee6551f0224adbcc768c1abc

Примерные параметры тепловыделения компонентов среднестатистического системного блока компьютера (при высокой вычислительной нагрузке). Основными источниками тепла являются материнская плата, центральный процессор и графический процессор видеокарты (на их долю приходится более половины рассеиваемого тепла).

Емкость современных HDD позволяет хранить на них обширные коллекции музыки и видео, рабочие документы, цифровые фотоальбомы, игры и многое другое. Диски становятся все компактнее и быстрее, но за это приходится расплачиваться большей плотностью записи данных, хрупкостью конструкции, а значит, и уязвимостью начинки. Допуски при производстве емких накопителей измеряются микронами, так что малейший «шаг в сторону» выводит диск из строя. Потому HDD столь чувствительны к внешним воздействиям. Если диску приходится работать в неоптимальных условиях (например, с перегревом), вероятность потери записанных данных резко возрастает.

Охлаждение ПК: азы

Если температура воздуха в системном блоке держится на уровне 36°С или выше, а температура процессора – более 60°С (либо жесткий диск постоянно нагревается до 45°С), пора принимать меры по улучшению охлаждения.

Но прежде чем бежать в магазин за новым кулером, примите во внимание несколько моментов. Не исключено, что проблему перегрева можно решить более простым способом. Например, системный блок должен располагаться так, чтобы имелся свободный доступ воздуха ко всем вентиляционным отверстиям. Расстояние, на которое его тыльная часть отстоит от стены или мебели, должно быть не меньше, чем два диаметра вытяжного вентилятора. Иначе возрастает сопротивление оттоку воздуха, а главное – нагретый воздух дольше остается рядом с вентиляционными отверстиями, так что значительная его часть вновь попадает в системный блок. Если он установлен неправильно, от перегрева не спасет даже самый мощный кулер (эффективность работы которого определяется разностью между его температурой и температурой охлаждающего радиатор воздуха).

КУЛЕР, ОСНОВАННЫЙ НА ЭФФЕКТЕ ПЕЛЬТЬЕ

21f6f9c3f393ff42a1dda5be4136

Одна из новейших моделей, в которой использован эффект Пельтье. Обычно в таких кулерах представлен полный набор последних технологических достижений: ТЭМ, термотрубки, вентиляторы с продвинутой аэродинамикой и эффектный дизайн. Результат впечатляющий; хватило бы места в системном блоке…

Максимально эффективное охлаждение достигается при равенстве температур воздуха в системном блоке и в помещении, где он находится. Единственный способ получить такой результат – обеспечить эффективную вентиляцию. Для этого используются кулеры всевозможных конструкций.

В стандартном современном персональном компьютере обычно устанавливается несколько кулеров:

В отдельных случаях применяются дополнительные вентиляторы:

Эффективность охлаждения

Выбирая корпус для системного блока ПК, каждый из пользователей руководствуется собственными критериями. Например, моддерам требуется оригинальное дизайнерское решение либо возможность переделки для воплощения оного. Оверклокерам нужен корпус, в котором комфортно почувствует себя до предела разогнанный процессор, видеокарта, ОЗУ (список можно продолжать). И при этом все, конечно, хотят, чтобы системный блок был тихим и небольшим по размеру.

Однако навороченный ПК может выделять до 500 Вт тепла (см. таблицу ниже). Осуществимы ли пожелания с точки зрения законов физики?

СКОЛЬКО ТЕПЛА ВЫДЕЛЯЕТ КОМПЬЮТЕР

Есть несколько способов измерить тепловыделение.

1. По значениям потребляемой мощности, указанным в документации к компонентам ПК.

2. С помощью сайтов, предоставляющих сервис для расчета тепловыделения (и потребляемой мощности), – например, www.emacs.ru/calc.

3. По значениям потребляемой узлами мощности и коэффициентам тепловыделения, найденным в документации или измеренным самостоятельно. Этот способ – для профессионалов либо больших энтузиастов оптимизации системы охлаждения.

Пути решения

Главный принцип: чтобы отвести тепло, необходимо пропустить через системный блок определенное количество воздуха. Причем его объем должен быть тем больше, чем жарче в помещении и чем сильнее перегрев.

Простой установкой дополнительных вентиляторов проблему не решить. Ведь чем они многочисленнее, мощнее и «оборотистее», тем «звучнее» ПК. Причем мало того, что шумят двигатели и лопасти вентиляторов, – вследствие вибраций шумит весь системный блок (особенно часто это бывает при некачественной сборке и использовании дешевых корпусов). Для исправления такой ситуации рекомендуется применять низкооборотные вентиляторы большого диаметра.

Чтобы можно было добиться эффективного охлаждения, не используя шумные вентиляторы, системный блок должен иметь низкое сопротивление для воздуха, который через него проходит (на профессиональном языке это называется аэродинамическим сопротивлением). Говоря попросту – если воздух с трудом «пролезает» сквозь тесное пространство, забитое кабелями и компонентами, приходится ставить вентиляторы с большим избыточным давлением, а они неизбежно создают сильный шум. Другая проблема – пыль: чем больше воздуха надо прокачивать, тем чаще требуется очищать внутренность корпуса (об этом поговорим отдельно).

Аэродинамическое сопротивление

Для оптимального охлаждения всегда желательно использовать большой корпус. Только так можно добиться комфортной работы без шума и перегрева даже при аномальной (свыше 40°С) жаре. Маленький корпус уместен лишь в том случае, если компьютер имеет низкое тепловыделение либо используется водяное охлаждение.

Впрочем, для минимизации шума вовсе не обязательно собирать ПК с воздушным охлаждением в морском контейнере или в холодильнике. Достаточно учесть рекомендации специалистов. Так, свободное сечение в любом разрезе корпуса должно быть в 2–5 раз больше проходного сечения вытяжных вентиляторов. Это также относится и к отверстиям для подачи воздуха.

КУЛЕР НА ТЕРМОТРУБКАХ

c393c4f2f66ff0880f0d7d4c40bc

Кулеры на термотрубках «молчаливы» и позволяют охлаждать даже весьма горячие компоненты ПК, такие как графические процессоры видеокарт. Однако нужно непременно учитывать специфические особенности этих охлаждающих систем.

afb074da046a05139a666b2e5d4c

Гибридные системы включают, наряду с термотрубками и радиаторами, обычные вентиляторы. Но присутствие термотрубок, облегчающих отвод тепла, позволяет обойтись вентилятором меньших размеров либо использовать низкооборотные, а значит, не столь шумные модели.

Для того чтобы снизить аэродинамическое сопротивление, нужно:

Соблюдение нехитрых правил позволит установить низкооборотные вытяжные вентиляторы. Как уже говорилось, корпус должен обеспечивать подачу холодного воздуха из помещения, где стоит ПК, ко всем «горячим» компонентам без больших энергетических затрат (т.е. минимальным числом вентиляторов). Объем воздуха должен быть достаточным, чтобы его температура на выходе из корпуса не оказалась слишком высокой: для эффективной теплоотдачи компонентов ПК разность температур воздуха на входе и на выходе из системного блока не должна превышать нескольких градусов.

ВАРИАНТЫ КОМПОНОВКИ ВЕНТИЛЯТОРОВ И ЭЛЕМЕНТОВ СИСТЕМНОГО БЛОКА, ОБЕСПЕЧИВАЮЩИЕ ЭФФЕКТИВНОЕ ОХЛАЖДЕНИЕ ПК

Вот одна из концепций построения системы воздушного охлаждения:

В соответствии с данными рекомендациями можно дорабатывать корпуса самостоятельно (интересно, но хлопотно) либо при покупке выбирать соответствующие модели. Примерные варианты организации потоков воздуха через системный блок приводятся выше.

«Правильный» вентилятор

Если системный блок слабо «сопротивляется» потоку вдуваемого воздуха, можно использовать любой вентилятор, лишь бы он давал достаточный для охлаждения поток (об этом можно узнать из его паспорта, а также пользуясь онлайн­калькуляторами). Другое дело, если сопротивление воздушному потоку значительно – именно так обстоит дело с вентиляторами, монтируемыми в плотно «заселенные» корпуса, на радиаторы и в отверстия, забранные перфорацией.

Если вы решили самостоятельно заменить вышедший из строя вентилятор в корпусе или на кулере, устанавливайте такой, который обладает не меньшими значениями расхода и избыточного давления воздуха (см. паспорт). Если соответствующей информации нет, использовать подобный вентилятор в ответственных узлах (например, для охлаждения процессора) не рекомендуется.

Если уровень шума не слишком важен, можно устанавливать «оборотистые» вентиляторы большего диаметра. Более «толстые» модели позволяют снижать уровень шума, одновременно повышая давление воздуха.

В любом случае обращайте внимание на зазор между лопастями и ободом вентилятора: он не должен быть большим (оптимальная величина исчисляется десятыми долями миллиметра). Если расстояние между лопастями и ободом больше 2 мм, вентилятор окажется малоэффективным.

Воздух или вода?

Довольно широко распространено мнение, согласно которому водяные системы намного действеннее и тише обычных воздушных. Так ли это на самом деле? Действительно, теплоемкость у воды вдвое, а плотность – в 830 раз выше, чем у воздуха. Это значит, что равный объем воды способен отвести в 1658 раз больше тепла.

Однако с шумом все не так просто. Ведь теплоноситель (вода) в итоге отдает тепло все тому же «забортному» воздуху, и водяные радиаторы (за исключением огромных конструкций) оснащены такими же вентиляторами – их шум добавляется к шуму водяного насоса. Поэтому выигрыш, если он есть, не так уж велик.

Читать статью  Как подключить переднюю панель корпуса к материнской плате

Конструкция сильно усложняется, когда необходимо охладить несколько компонентов потоком воды, пропорциональным их тепловыделению. Не считая разветвленных трубок, приходится применять сложные регулирующие приборы (простыми тройниками и крестовинами не обойдешься). Альтернативный вариант – использовать конструкцию с раз и навсегда отрегулированными на заводе потоками; но в этом случае пользователь лишен возможности существенно изменить конфигурацию ПК.

Пыль и борьба с ней

Вследствие перепадов скоростей системные блоки компьютеров становятся настоящими пылесборниками. Скорость воздуха, идущего через входные отверстия, многократно превышает скорость потоков внутри корпуса. Кроме того, воздушные потоки часто меняют направление, огибая компоненты ПК. Поэтому большинство (до 70%) приносимой извне пыли оседает внутри корпуса; необходимо хотя бы раз в год производить чистку.

Впрочем, пыль может стать вашим «союзником» в борьбе за повышение эффективности системы охлаждения. Ведь активное ее оседание наблюдается как раз в тех местах, где воздушные потоки распределяются не оптимальным образом.

Воздушные фильтры

Волокнистые фильтры перехватывают более 70% пыли, что позволяет чистить корпус значительно реже. Зачастую в корпуса современных ПК устанавливают несколько вытяжных вентиляторов диаметром 120 мм, при этом воздух поступает в корпус через множество входных отверстий, рассредоточенных по всей конструкции, – их суммарная площадь много меньше площади вентиляторов. Устанавливать фильтр в такой корпус без доработки бессмысленно. Профессионалы дают здесь ряд рекомендаций:

938f2629b7d2b37f43b13f3bd4c8

Кулеры на элементах Пельтье

Элементы Пельтье – или, как их еще называют, термоэлектрические модули (ТЭМ), работающие на принципе эффекта Пельтье, – выпускаются в промышленных масштабах уже много лет. Их встраивают в автомобильные холодильники, охладители для пива, промышленные кулеры для охлаждения процессоров. Существуют модели и для ПК, хотя встречаются они еще довольно редко.

Сначала – о принципе работы. Как нетрудно догадаться, эффект Пельтье открыт французом Жаном­-Шарлем Пельтье; случилось это в 1834 году. Охлаждающий модуль на основе данного эффекта включает множество последовательно соединенных полупроводниковых элементов n­ и p­типов. При прохождении постоянного тока через такое соединение одна половина p-n­контактов будет нагреваться, другая – охлаждаться.

Эти полупроводниковые элементы ориентированы так, чтобы нагревающиеся контакты выходили на одну сторону, а охлаждающиеся – на другую. Получается пластинка, которую с обеих сторон покрывают керамическим материалом. Если подать на такой модуль достаточно сильный ток, разность температур между сторонами мо жет достигать нескольких десятков градусов.

Можно сказать, что ТЭМ – своего рода «тепловой насос», который, затрачивая энергию внешнего источника питания, перекачивает выделяемое тепло от источника (например, процессора) к теплообменнику – радиатору, участвуя таким образом в процессе охлаждения.

Чтобы эффективно отводить тепло от мощного процессора, приходится использовать ТЭМ из 100–200 элементов (которые, кстати, довольно хрупки); поэтому ТЭМ оснащен дополнительной медной контактной пластиной, что увеличивает размер устройства и требует нанесения дополнительных слоев термопасты.

Это снижает эффективность теплоотведения. Проблема частично решается заменой термопасты пайкой, но в доступных на рынке моделях такой способ применяется редко. Заметим, что энергопотребление самого ТЭМ достаточно велико и сопоставимо с количеством отводимого тепла (примерно треть используемой ТЭМ энергии также превращается в тепло).

Другая трудность, возникающая при использовании ТЭМ в кулерах, – необходимость точного регулирования температуры модуля; оно обеспечивается применением специальных плат с контроллерами. Это удорожает кулер, к тому же плата занимает дополнительное место в системном блоке. Если температуру не регулировать, она может опуститься до отрицательных значений; возможно также образование конденсата, что недопустимо для электронных компонентов компьютера.

Итак, качественные кулеры на основе ТЭМ дороги (от 2,5 тыс. руб.), сложны, громоздки и не так эффективны, как можно подумать, судя по их размерам. Единственная область, в которой такие кулеры незаменимы, – охлаждение промышленных компьютеров, работающих в жарких (выше 50°С) условиях; однако к теме нашей статьи это не относится.

cf1c50f68981fa2ad3aa30c05d76

Термоинтерфейс и термопаста

Как уже говорилось, составной частью любой охлаждающей системы (в том числе компьютерного кулера) является термоинтерфейс – компонент, через который осуществляется термоконтакт между тепловыделяющим и теплоотводящим устройствами. Выступающая в этой роли термопаста обеспечивает эффективный перенос тепла между, например, процессором и кулером.

Зачем нужна теплопроводящая паста

Если радиатор кулера неплотно прилегает к охлаждаемому чипу, эффективность работы всей охлаждающей системы сразу снижается (воздух – хороший теплоизолятор). Сделать поверхность радиатора ровной и плоской (для идеального контакта с охлаждаемым устройством) весьма трудно, да и недешево. Здесь и приходит на помощь термопаста, заполняющая неровности на контактирующих поверхностях и тем самым значительно повышающая эффективность теплопереноса между ними.

Важно, чтобы вязкость термопасты была не слишком высокой: это необходимо для вытеснения воздуха из места термоконтакта при минимальном слое термопасты. Учтите, кстати, что полировка подошвы кулера до зеркального состояния сама по себе может и не улучшить теплообмен. Дело в том, что при ручной обработке практически нереально сделать поверхности строго параллельными, – в итоге зазор между радиатором и процессором может даже увеличиться.

577a674312d44933264a8f3b02cd

Прежде чем наносить новую термопасту, старательно избавьтесь от старой. Для этого используются салфетки из нетканых материалов (они не должны оставлять волокон на поверхностях). Разводить пасту крайне нежелательно, так как это сильно ухудшает теплопроводящие свойства. Дадим еще несколько рекомендаций:

Термотрубки

Термотрубки замечательно подходят для отвода излишков тепла. Они компактны и бесшумны. По конструкции это герметичные цилиндры (могут быть довольно длинными и произвольным образом изогнутыми), частично заполненные теплоносителем. Внутри цилиндра находится другая трубка, сделанная в виде капилляра.

Работает термотрубка следующим образом: в нагретой области теплоноситель испаряется, его пар переходит в охлаждаемую часть термотрубки и там конденсируется – а конденсат по капиллярной внутренней трубке возвращается в нагретую область.

Главное преимущество термотрубок состоит в высокой теплопроводности: скорость распространения тепла равна скорости, с которой пары теплоносителя проходят трубку из конца в конец (она весьма велика и близка к скорости распространения звука). В условиях меняющегося тепловыделения охлаждающие системы на термотрубках очень эффективны. Это важно, например, для охлаждения процессоров, которые, в зависимости от режима работы, выделяют разное количество тепла.

Выпускаемые сейчас термотрубки способны отводить 20–80 Вт тепла. При конструировании кулеров обычно применяются трубки диаметром 5–8 мм и длиной до 300 мм.

891160bb088876b4f5707abae03e

Однако при всех преимуществах термотрубок у них есть одно существенное ограничение, о котором далеко не всегда пишут в руководствах. Производители обычно не указывают температуру закипания теплоносителя в термотрубках кулера, между тем именно она определяет порог, при пересечении которого термотрубка начинает эффективно отводить тепло. До этого момента пассивный кулер на термотрубках, не имеющий вентилятора, работает как обычный радиатор. Вообще, чем ниже температура закипания теплоносителя, тем эффективнее и безопаснее кулер на термотрубках; рекомендуемое значение – 35—40°С (лучше, если температура закипания указана в документации).

Подведем итоги. Кулеры на тепловых трубках особенно полезны при высоком (более 100 Вт) тепловыделении, но их можно применять и в других случаях – если не смущает цена. При этом необходимо использовать термопасты, эффективно передающие тепло, – это позволит полностью реализовать возможности кулера. Общий принцип выбора таков: чем больше термотрубок и чем они толще, тем лучше.

Разновидности термотрубок

Термотрубки высокого давления (HTS). В конце 2005 года компания ICE HAMMER Electronics представила новый вид кулеров на тепловых трубках высокого давления, построенных по технологии Heat Transporting System (HTS). Можно сказать, что данная система занимает промежуточное положение между тепловыми трубками и жидкостными системами охлаждения. Теплоносителем в ней является вода с примесью аммиака и других химических соединений при нормальном атмосферном давлении. Благодаря подъему пузырьков, образующихся при закипании смеси, циркуляция теплоносителя значительно ускоряется. Видимо, такие системы максимально эффективно работают, когда трубки занимают вертикальное положение.

Технология NanoSpreader позволяет создавать полые теплопроводящие ленты из меди шириной 70–500 мм и толщиной 1,5–3,5 мм, заполненные теплоносителем. Роль капилляра играет полотно из медных волокон, возвращающее сконденсированный теплоноситель из зоны конденсации в зону нагрева и испарения. Форму плоской ленты поддерживает упругий крупнопористый материал, который не позволяет стенкам спадаться и обеспечивает свободное перемещение паров. Главные преимущества тепловых лент – малая толщина и возможность накрывать большие площади.

Моддинг и системы охлаждения

Слово «моддинг» образовано от английского modify (модифицировать, изменять). Моддеры (те, кто занимается моддингом) преобразуют корпуса и «внутренности» компьютеров с целью улучшения технических характеристик, а главное – внешнего вида. Как и любители автомобильного тюнинга, компьютерные пользователи хотят персонифицировать свой инструмент работы и творчества, незаменимое средство коммуникации и центр домашних развлечений. Моддинг – мощное средство самовыражения; это, безусловно, творчество, возможность поработать головой и руками, приобрести ценный опыт.

ТОВАРЫ ДЛЯ МОДДИНГА

Существует масса специализированных интернет-магазинов (как российских, так и зарубежных), которые предлагают товары для моддинга, доставляя их по всему миру. Отечественными пользоваться удобнее: с иностранными больше хлопот (например, при переводе денег), да и доставка, как правило, дорогая. Подобные специализированные ресурсы легко найти, воспользовавшись поисковыми системами.

Иногда принадлежности для моддинга совершенно неожиданно обнаруживаются в прайс-листах обычных интернет-магазинов, причем цена на них подчас ниже, чем в специализированных. Поэтому рекомендуем не спешить с покупкой того или иного аксессуара – сперва тщательно изучите несколько прайс-листов.

Что изменяют моддеры в компьютерах

Вряд ли среднестатистический моддер способен переделать сложную начинку: возможности пользователя, не обладающего специальными знаниями в области радиоэлектроники и схемотехники, все же ограниченны. Поэтому компьютерный моддинг предполагает в основном «косметическое» преображение корпуса компьютера.

ОСНОВНЫЕ ПРОИЗВОДИТЕЛИ ТОВАРОВ ДЛЯ МОДДИНГА

Чтобы лучше ориентироваться в комплектующих, имеет смысл знать имена некоторых компаний, специализирующихся на выпуске мод-товаров: Sunbeam, Floston, Gembird, Revoltec, Vizo, Sharkoon, Vantec, Spire, Hanyang, 3R System, G. M. Corporation, Korealcom, RaidMax, Sirtec (компьютерные корпуса и блоки питания), Zalman, Akasa (БП, системы охлаждения), Koolance, SwiftTech (водяное охлаждение), VapoChill (системы криогенного охлаждения), Thermaltake (в основном корпуса и мод-панели).

В частности, осуществляются так называемые blowhole-моды: в корпусе прорезаются отверстия для вентиляции, а также для установки дополнительных кулеров. Такие модификации не просто улучшают внешний вид – они полезны для общего «здоровья» компьютера, поскольку усиливают охлаждение компонентов системы.

Опытные моддеры часто сочетают приятное с полезным: устанавливают жидкостные системы охлаждения (большинство их имеет совершенно футуристический дизайн).

Они крупнее по размерам и, как правило, дороже традиционных воздушных, зато позволяют разгонять центральный процессор, видеокарту и оперативную память.

СИСТЕМА ЖИДКОСТНОГО ОХЛАЖДЕНИЯ KOOLANCE EXOS-2 V2

1400b678bccafcb6bc20dbf1f6c5

Построение эффективной системы водяного охлаждения (СВО) – задача не из легких и в техническом, и в финансовом смысле. Как было сказано, необходим солидный багаж специальных знаний, которые есть далеко не у каждого; да и без технических навыков не обойтись. Все это сильно стимулирует к покупке готовой СВО. Склоняясь к данному варианту, будьте готовы изрядно раскошелиться. Причем далеко не факт, что прирост производительности процессора и прочих компонентов системного блока, даже разогнанного благодаря эффективному отводу тепла новой СВО, окупит разницу в стоимости по сравнению со штатной (или даже улучшенной) системой воздушного охлаждения. Но у такого варианта есть и явные плюсы. Приобретая готовую СВО, вы не должны будете самостоятельно подбирать отдельные компоненты, заказывать их на сайтах разных производителей или продавцов, ожидать доставки и т.п. К тому же не придется заниматься модификацией корпуса ПК – часто это преимущество перевешивает все недостатки. Наконец, серийные СВО обычно дешевле моделей, собранных по частям.

Примером СВО, предоставляющей разумный компромисс между свободной творчества и простотой сборки (без ущерба для эффективности охлаждения), является система KoolanceExos-2 V2. Она позволяет использовать самые разные водоблоки (так называются полые теплообменники, накрывающие охлаждаемый элемент) из широкого ассортимента, выпускаемого компанией. Блок данной СВО объединяет радиатор-теплообменник с вентиляторами, помпу, расширительный бачок, датчики и управляющую электронику.

Процесс установки и подключения таких СВО очень прост – он подробно описан в руководстве пользователя. Учтите, что вентиляционные отверстия СВО располагаются сверху. Соответственно, над вентиляторами должно быть достаточно свободного места для оттока нагретого воздуха (не менее 240 мм при диаметре вентиляторов 120 мм). Если такого пространства сверху нет (например, мешает столешница компьютерного стола), можно просто положить блок СВО рядом с системным блоком – хотя такой вариант не описан в инструкции.

Мод-товары для систем охлаждения

Хотя ассортимент мод­товаров, которые предлагаются российскими специализированными интернет­магазинами, не очень широк (по сравнению с зарубежными компаниями), начинающий любитель моддинга может легко и просто запутаться в позициях прайс­листа и не совсем верно понять предназначение или преимущества тех или иных аксессуаров.

5a0e749b80ecf74b1232433e0fcc

Самый простой и очевидный способ моддинга – замена штатных кулеров на моддерские с подсветкой (их выбор также достаточно широк: есть и мощные процессорные кулеры, и слабенькие – декоративные).

Главное правило: сравнивайте цены в разных поисковых системах и интернет­магазинах! Амплитуда колебаний вас немало удивит. Разумеется, следует выбирать более дешевые предложения, непременно обращая внимание на условия оплаты, доставки и гарантии.

О Admin

Основатель компьютерного сервиса TERABYTE Смотреть все посты от Admin →

Источник https://infotechnica.ru/pro-kompyuteryi/o-protsessorah/tdp-teplovydelenie/

Источник https://doma35.ru/computers/teplovydelenie-sistemnogo-bloka-kompyutera/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *